Antibiotics For Anaerobic Infections | Pharmacology💊
Dr. Najeeb Lectures Dr. Najeeb Lectures
2.12M subscribers
22,944 views
0

 Published On Dec 29, 2023

#medicaleducation #drnajeeblectures #medicallecture #antibiotics #anaerobic

Antibiotics For Anaerobic Infections | Pharmacology💊

This lecture is a clip from the Clindamycin vs Metronidazole Part 2
Complete lecture is available in the members area at: www.DrNajeebLectures.com.

Like this video?
Sign up now on our website at https://www.DrNajeebLectures.com to access 800+ Exclusive videos on Basic Medical Sciences & Clinical Medicine. These are premium videos (NOT FROM YOUTUBE). All these videos come with English subtitles & download options. Sign up now! Get Lifetime Access for a one-time payment of $99 ONLY!

Sign up now on our website at https://members.drnajeeblectures.com/
---------------------------------------------------------------------------------------------------------------------------
Why sign up for premium membership? Here's why!
Membership Features for premium website members.

1. More than 800+ Medical Lectures.
2. Basic Medical Sciences & Clinical Medicine.
3. Mobile-friendly interface with android and iOS apps.
4. English subtitles and new videos every week.
5. Download option for offline video playback.
6. Fanatic customer support and that's 24/7.
7. Fast video playback option to learn faster.
8. Trusted by over 2M+ students in 190 countries.
---------------------------------------------------------------------------------------------------------------------------
▬▬▬▬▬▬▬▬▬▬ Contents of this video ▬▬▬▬▬▬▬▬▬▬
00:00:00
00:00:00
00:00:00

An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the ones which cause the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.

Sometimes, the term antibiotic—literally "opposing life", from the Greek roots ἀντι anti, "against" and βίος bios, "life"—is broadly used to refer to any substance used against microbes, but in the usual medical usage, antibiotics (such as penicillin) are those produced naturally (by one microorganism fighting another), whereas non-antibiotic antibacterials (such as sulfonamides and antiseptics) are fully synthetic. However, both classes have the same goal of killing or preventing the growth of microorganisms, and both are included in antimicrobial chemotherapy. "Antibacterials" include bactericides, bacteriostatics, antibacterial soaps, and chemical disinfectants, whereas antibiotics are an important class of antibacterials used more specifically in medicine and sometimes in livestock feed.

Antibiotics have been used since ancient times. Many civilizations used topical application of moldy bread, with many references to its beneficial effects arising from ancient Egypt, Nubia, China, Serbia, Greece, and Rome. The first person to directly document the use of molds to treat infections was John Parkinson (1567–1650). Antibiotics revolutionized medicine in the 20th century. Alexander Fleming (1881–1955) discovered modern day penicillin in 1928, the widespread use of which proved significantly beneficial during wartime. However, the effectiveness and easy access to antibiotics have also led to their overuse and some bacteria have evolved resistance to them. The World Health Organization has classified antimicrobial resistance as a widespread "serious threat [that] is no longer a prediction for the future, it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country". Global deaths attributable to antimicrobial resistance numbered 1.27 million in 2019.
---------------------------------------------------------------------------------------------------------------------------
Join this channel to get access to the perks:
Sign up now on our website at https://members.drnajeeblectures.com/
Follow us on Facebook:-   / drnajeeb  
Follow us on Instagram:-   / drnajeeblectures  

show more

Share/Embed